Search Topics
(Searching a total of 402 Topics)
Topics about "lepidosaurs" include:
-
Viviparity in mosasaurs
An exceptionally preserved gravid female of the aigalosaur Carsosaurus contains at least at least four advanced embryos […] Their orientation suggests that they were born tail-first […] to reduce the possibility of drowning, an adaptation shared with other other highly aquatic amniotes” M.W. Caldwell & M.S.Y. Lee (2001) Proceedings of the Royal Society of London B, vol. 268, p.2397
Topics containing the search term "lepidosaurs" are:
-
Crustacean-trapping teeth in mesosaurs and crabeater seals
The multi-lobed post-canines of Lobodon carcinophagus are a functional analogue to the long, thin cage-like teeth of Mesosaurus, as both cage and prevent the escape of small crustacean prey. -
Teeth in aquatic reptiles
Aquatic reptiles tend to display one of three dentition types, well adapted to either seize and slice large vertebrate prey, pierce and gouge slippery fish, or entrap small prey such as crustaceans. -
Teiid lizard dentition: convergence with other reptiles, mammals and fish
Teiids are skink-like lizards whose members show a stunning diversity of tooth types, providing rich evidence of convergence within the teiids themselves, in distantly related reptile groups and even in certain mammals and fish. -
Complex tooth occlusion in notosuchid crocodiles and tritylodonts (proto-mammals)
Two unusual Early Cretaceous crocodiles provide a shining example of convergence, as their dentition parallels that observed in a group of advanced proto-mammals called tritylodonts. -
Reptile dentition: convergence on complex occlusion
Some reptiles have transverse chisel-like teeth for slicing, and others have teeth bearing projections ('cusps') that interlock and slice or grind tough food. In each case evolutionary parallels are clear both within and outside the reptiles. -
Venom and venom fangs in snakes, lizards and synapsids
Although the evolution of snake fangs itself provides us with a window on convergence, the presence of fang-like teeth in lizards, therapsids and mammals provides an even broader and more remarkable perspective. -
Gliding in Draco lizards and tree snakes
“The agamid lizard genus Draco (consisting of the so-called ‘flying dragons’) exhibits an array of morphological traits associated with gliding.” – A.P. Russell & L.D. Dijkstra (2001) Journal of the Zoological Society of London, vol. 253, page 457 -
Gliding reptiles
In the reptiles, different forms of skin membrane (called ‘patagia’) and in some extinct species, primitive feathers, have evolved convergently as adaptations for gliding. -
Viviparity in sauropterygians
“The [fossilised] embryos are mostly in articulation and their distribution on each side indicates that female Keichousaurus hui had a pair of oviducts as in ichthyosaurs and many extant lizards.” Y. Cheng et al. (2003) Nature vol. 432, p.383 -
Viviparity in mosasaurs
An exceptionally preserved gravid female of the aigalosaur Carsosaurus contains at least at least four advanced embryos […] Their orientation suggests that they were born tail-first […] to reduce the possibility of drowning, an adaptation shared with other other highly aquatic amniotes” M.W. Caldwell & M.S.Y. Lee (2001) Proceedings of the Royal Society of London B, vol. 268, p.2397 -
Viviparity in ichthyosaurs
“For me, the fossil is a transporting piece of evidence. It shows a female ichthyosaur that died late in pregnancy or perhaps while giving birth; the baby was entombed with its mother in the mud.” J. Rennie (2000) Scientific American, vol. 283(6), p.8