Search Topics
(Searching a total of 402 Topics)
Topics about "lizards" include:
-
Beak structures in reptiles and birds
Among reptile taxa with beak structures, we find several cases of convergent evolution, for example between turtles, Uromastyx lizards, a number of herbivorous dinosaurs and the tuatara (Sphenodon) of New Zealand. -
Feeding in snakes and lizards
The Turtle-headed sea snake feeds on small eggs and its feeding shows intriguing similarities to the way lizards forage, and herbivorous mammals graze and browse. -
Viviparity in mosasaurs
An exceptionally preserved gravid female of the aigalosaur Carsosaurus contains at least at least four advanced embryos […] Their orientation suggests that they were born tail-first […] to reduce the possibility of drowning, an adaptation shared with other other highly aquatic amniotes” M.W. Caldwell & M.S.Y. Lee (2001) Proceedings of the Royal Society of London B, vol. 268, p.2397 -
Mammal-like placentation in skinks (and fish)
“Only two types of vertebrates [have] evolved a reproductive pattern in which the chorioallantoic placenta provides the nutrients for fetal development. One is [...] the eutherian mammals […], and the other, a few lineages of the family Scincidae.” A.F. Flemming (2003) J Exp Zool 299A 33-47 -
Anolis lizard ecomorphs
“A classic example of convergent evolution is the set of Anolis lizard ecomorphs of the Greater Antilles.” – Langerhans, Knouft & Losos (2006) Evolution, vol. 6, p.362 -
Parthenogenesis in Australian lizards and insects
“Evidence on the origin and spread of the two best-studied cases of parthenogenesis from the Australian arid zone, the grasshopper Warramaba virgo and the gecko Heteronotia binoei, suggests that they evolved in parallel.” – Kearney et al. (2006) Molecular Ecology vol. 15, p.1743 -
Ecological adaptations in Moloch and Phrynosoma lizards
Lizards of the genera Phrynosoma and Moloch have been considered a classic example of convergent evolution J. J. Meyers & A. Herrel (2005) The Journal of Experimental Biology, vol. 208, p. 114 -
Sand-dwelling (psammophilous) lizard ecomorphs
Desert sand dunes represent an extreme environmental setting in which selective forces have apparently generated dune ‘ecomorphs’ in six lizard families. – Lamb et al. (2003) Biological Journal of the Linnean Society, vol. 73, p. 253
Topics containing the search term "lizards" are:
-
Venom and venom fangs in snakes, lizards and synapsids
Although the evolution of snake fangs itself provides us with a window on convergence, the presence of fang-like teeth in lizards, therapsids and mammals provides an even broader and more remarkable perspective. -
Feeding in snakes and lizards
The Turtle-headed sea snake feeds on small eggs and its feeding shows intriguing similarities to the way lizards forage, and herbivorous mammals graze and browse. -
Limblessness in lizards
What's that slithering towards you? A snake? Look more closely, look convergently... -
Gliding lizards, frogs and ants
Tree-dwelling (‘arboreal’) ants capable of controlled gliding do so when dislodged or threatened by predation. Gliding species include members of three disparate families: Myrmicinae, Pseudomyrmecinae and Formicinae. -
Gliding in Draco lizards and tree snakes
“The agamid lizard genus Draco (consisting of the so-called ‘flying dragons’) exhibits an array of morphological traits associated with gliding.” – A.P. Russell & L.D. Dijkstra (2001) Journal of the Zoological Society of London, vol. 253, page 457 -
Ecological adaptations in Moloch and Phrynosoma lizards
Lizards of the genera Phrynosoma and Moloch have been considered a classic example of convergent evolution J. J. Meyers & A. Herrel (2005) The Journal of Experimental Biology, vol. 208, p. 114 -
Drinking adaptations in desert lizards
Both Moloch horridus and [...] Phrynosoma cornutum have the remarkable ability to transport water over their skin’s surface to the mouth where drinking occurs. Sherbrooke et al. (2007) Zoomorphology, vol. 126, p. 89 -
Parthenogenesis in Australian lizards and insects
“Evidence on the origin and spread of the two best-studied cases of parthenogenesis from the Australian arid zone, the grasshopper Warramaba virgo and the gecko Heteronotia binoei, suggests that they evolved in parallel.” – Kearney et al. (2006) Molecular Ecology vol. 15, p.1743 -
Viviparity in lizards, snakes and mammals
“In over 100 lineages of […] squamates, the oviduct has been recruited for viviparous gestation of the embryos, representing a degree of evolutionary convergence that is unparalleled in vertebrate history.” D. G. Blackburn (1998) Journal of Experimental Zoology, vol.282, p.560 -
Snail eating: an asymmetric diet
Snails may not be everyone's first choice on the menu but several distinct colubrid snakes have evolved expert techniques for gorging on these nutritious gastropods. -
“Broken jaw” – mandibular and maxillary jaw joints
At first sight having a jaw with a joint seems a contradiction in terms, but such exist and not only are obviously functional, but needless to say convergent. -
Teeth in aquatic reptiles
Aquatic reptiles tend to display one of three dentition types, well adapted to either seize and slice large vertebrate prey, pierce and gouge slippery fish, or entrap small prey such as crustaceans. -
Teiid lizard dentition: convergence with other reptiles, mammals and fish
Teiids are skink-like lizards whose members show a stunning diversity of tooth types, providing rich evidence of convergence within the teiids themselves, in distantly related reptile groups and even in certain mammals and fish. -
Complex tooth occlusion in notosuchid crocodiles and tritylodonts (proto-mammals)
Two unusual Early Cretaceous crocodiles provide a shining example of convergence, as their dentition parallels that observed in a group of advanced proto-mammals called tritylodonts. -
Reptile dentition: convergence on complex occlusion
Some reptiles have transverse chisel-like teeth for slicing, and others have teeth bearing projections ('cusps') that interlock and slice or grind tough food. In each case evolutionary parallels are clear both within and outside the reptiles. -
Beak structures in reptiles and birds
Among reptile taxa with beak structures, we find several cases of convergent evolution, for example between turtles, Uromastyx lizards, a number of herbivorous dinosaurs and the tuatara (Sphenodon) of New Zealand. -
Independent eye movement in fish, chameleons and frogmouths
One of the most surprising convergences amongst animals is that seen between a small fish that lives in coral sands, known as the sandlance, and the lizards known as chameleons. -
Gliding in feathered reptiles
A number of reptile species have been discovered in the Mesozoic fossil record, bearing feathers that were apparently used to support gliding locomotion, rather than true, powered flight as we see in present day birds. -
Gliding mammals
Gliding mammals rely primarily on extensive skin membranes or ‘patagia’ that stretch between fore- and hind-limbs, creating a wing-like structure. -
Gliding reptiles
In the reptiles, different forms of skin membrane (called ‘patagia’) and in some extinct species, primitive feathers, have evolved convergently as adaptations for gliding. -
Sand-dwelling (psammophilous) lizard ecomorphs
Desert sand dunes represent an extreme environmental setting in which selective forces have apparently generated dune ‘ecomorphs’ in six lizard families. – Lamb et al. (2003) Biological Journal of the Linnean Society, vol. 73, p. 253 -
Anolis lizard ecomorphs
“A classic example of convergent evolution is the set of Anolis lizard ecomorphs of the Greater Antilles.” – Langerhans, Knouft & Losos (2006) Evolution, vol. 6, p.362 -
Mammal-like placentation in skinks (and fish)
“Only two types of vertebrates [have] evolved a reproductive pattern in which the chorioallantoic placenta provides the nutrients for fetal development. One is [...] the eutherian mammals […], and the other, a few lineages of the family Scincidae.” A.F. Flemming (2003) J Exp Zool 299A 33-47 -
Viviparity in sauropterygians
“The [fossilised] embryos are mostly in articulation and their distribution on each side indicates that female Keichousaurus hui had a pair of oviducts as in ichthyosaurs and many extant lizards.” Y. Cheng et al. (2003) Nature vol. 432, p.383 -
Viviparity in mosasaurs
An exceptionally preserved gravid female of the aigalosaur Carsosaurus contains at least at least four advanced embryos […] Their orientation suggests that they were born tail-first […] to reduce the possibility of drowning, an adaptation shared with other other highly aquatic amniotes” M.W. Caldwell & M.S.Y. Lee (2001) Proceedings of the Royal Society of London B, vol. 268, p.2397 -
Viviparity in ichthyosaurs
“For me, the fossil is a transporting piece of evidence. It shows a female ichthyosaur that died late in pregnancy or perhaps while giving birth; the baby was entombed with its mother in the mud.” J. Rennie (2000) Scientific American, vol. 283(6), p.8 -
Venom in mammals (and other synapsids)
Beware the venomous shrew! Yes, venomous. And convergent on some formidable lizards... -
Adhesive pads: from geckos to spiders
In terms of adhesive pads we find they have a remarkably wide distribution evolving in at least four distinct groups, including members of the reptiles, amphibians, arthropods and mammals, with tentative parallels in sea urchins. -
Silk production and use in arthropods
Remarkably, fossil silk is known, especially from amber of Cretaceous age. Material includes both silk with trapped insects, possibly from an orb-web, and strands with the characteristic viscid droplets that are the key in trapping prey. -
Sap feeding and honey-dew production in insects
Interestingly, it has now been shown that the saliva of the aphids has an analogue to the anti-coagulant properties of blood suckers, subverting the wound repair mechanism of the plant. -
Ants: insights into convergence
Trap-jaws, silk and agriculture – just a few examples of convergence in the arguably most successful group of insects, the ants… -
Worm-like body form
Man is but a worm, but so are many other vertebrates... -
Burrowing: from worms to vertebrates
Quite a few adaptations are useful for burrowing into the soil. So it is not exactly surprising that they have evolved several times...